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* Some thoughts on Grid Integration Challenges
¢ EXAMPLE: Irvine Smart Grid Demonstration (ISGD)

* Fuel Cell and Hydrogen Production Dynamics & Control
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Grid Integration Challenges

Policy challenges:

* Integration requirements different in each state
* Tariff / Rate Structure Challenges

Departing Load charges
Demand charges
No Net-Metering
Co-Metering (Wholesale vs. Retail price)
No structures for additional benefit payments
— Power quality
— Power factor correction
— Demand response
— Virtual utility response

* Utility Design / Review costs
* Metering & Interconnect Switchgear costs
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Grid Integration Challenges

Wind Power — Example of Non-Coincidence with Peak

CAISO Wind Generation
July 2006 Heat Wave

Total Wind Generation Installed Capacity = 2, 648 MW

Need some energy storage and/or dispatchable power
to shift the resource to match demand
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Grid Integration Challenges

Energy Deployment Model: 33% Wind Penetration
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Need huge dispatchable resource increase (FC?), existing
generators must become more flexible & complemented

by energy storage (H,?), demand response, ...
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Grid Integration Challenges

Solar Power ~coincident with peak — but clouds cause problem

Output from Nevada 70 KW array

= T120 (Partly cloudy)
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SunPower, Inc., 2008
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Grid Integration Challenges

Solar Power ~coincident with peak — but clouds cause problem
Output from Nevada 70 KW array
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Still need highly dynamic complementary resources, and
a bit of storage to make coincident with demand
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Grid Integration Challenges

Circuit Operation/Control Challenges: Voltage Regulation
*  NolRisOeib DiedEeetesaiooni $GT Qaseodated with current infrastructure:
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* Use load-tap changing (LTC) transformer to control substation voltage

What happens when we add PV to this distribution circuit?
* Penetration Factor = DG capacity / Circuit baseline

Two-way power flow, high penetration of loads (e.g., EVs)
or generation (e.g., FC systems) pose capacity challenges
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Grid Integration Challenges

Inverter Interconnection & Harmonics: Baseline case:

* Examine inverter-load relationship
* DG following measured

building load (non-linear)
Inverter-only

* Assume Pgrid = 10kW
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Inverter-only design is insufficient to

compensate harmonics
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Grid Integration Challenges

Inverter Interconnection & Harmonics: APF case:

* Infinite load-following

* Add active power filter (APF) s M
* APF provides compensation :

current
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line current harmonics

10/33

AT
e

pe—



Grid Integration Challenges

EVs: Resource or Capacity Challenge?
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* EXAMPLE: Irvine Smart Grid Demonstration (ISGD)

)
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Irvine Smart Grid Demonstration (ISGD)

Project Team led by Southern California Edison (SCE):

* UC Irvine — energy conversion device testing, optimization
and benefits analysis, faculty housing coordination

* GE - advanced appliances, EMS, smart inverters

* A123 Systems - battery storage

* SunPower Corp. — solar photovoltaic systems

* ltron Inc. — SmartConnect™ metering infrastructure

* EPRI - analysis, simulation, data acquisition

* USC - DARPnet security and interoperability protocols
* Cal Poly Pomona - curriculum development




Irvine Smart Grid Demonstration (ISGD)

o v AN I. Energy Smart Customer Devices

1. Zero Net Energy (ZNE) Homes
2. PEV Charging at Work
Il. Y2020 Distribution System
. Distribution Circuit Constraint
Management Using Energy Storage
. Enhanced Volt/VAR Control
. Self Healing Distribution Circuits
6. Deep Grid Situational Awareness
. lll.Secure Energy Internet (SENet)
7. End-to-End cyber security and

Smart Homes

\ University Hillg g interoperability
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Irvine Smart Grid Demonstration (ISGD)

* Evolution of Home Energy Efficiency Technologies in ISGD

Test Energy Home PEV (non- Home PEV # of
Case Efficiency Area PV | EVSE commun- Storage (commun- Homes
Level* Networkt icating) 9 icating)

- - - - - - - ~10

Control
2012 35% Yes Yes - - - - ~10
2015 55% Yes Yes Yes Yes Yes - ~10
2020- 65% Yes Yes Yes Yes Yes Yes ~10
ZNE

* above 2005 Title 24 level
Tincludes in-home displays, programmable, controllable thermostats, energy management
systems, smart appliances, Edison SmartConnect™ meters
EVSE - electric vehicle supply equipment
PEV — plug-in electric vehicle
PV — photo-voltaic
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ISGD Communication & Control Technologies

Advanced Sensing and Measurement
* Smart meters — Advanced Metering Infrastructure (AMI)

* Cost-effective sensing and energy measurement for home
automation and smart appliances
* Distribution network sensing

* Monitor voltage, frequency, angle, component temperature, weather
conditions such as irradiance, wind velocity, and ambient temperature

* Transmission system sensing — phasors/synchrophasors
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Outline

* Fuel Cell and Hydrogen Production Dynamics & Control

© Advanced Power and Energy Program, 2012 18/33 \._-.2",'/



Sample Dynamic Simulation Module Geometries

* Planar SOFC with 10 Discrete Computational Nodes
* Anode Gas, Cathode Gas, Cell EEA, Separator Plates
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* Reformer Module with 5 Discrete Computational Nodes
* Anode Off-Gas Recycle, Fuel Mix, Combustor HX, Catalyst Bed
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SOFC Power Experimental and Model Comparison
for the 220 kW SOFC/GT Hybrid
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Integrated Fuel Cell System Dynamics

Jan 2001
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Building Energy and Controls

Measure Dynamic Loads and CCHP Performance
* Measured commercial building dynamic loads
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http://www.fuelcellenergy.com/index.php
http://www.sce.com/sc3/

Building Energy and Controls

Measure Dynamic Loads and CCHP Performance

* Measured commercial building dynamic loads
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Building Energy and Controls

Measure Dynamic Loads and CCHP Performance

* Commercial Office Building “High Resolution” Data
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Building Energy and Controls

Simulate Existing CCHP Performance

* Example of integrated CCHP system and Simulink®
embodiment (Meacham et al., 2006)
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Building Energy and Controls

Develop Novel Control Algorithms
* Previous algorithm example (Meacham et al., 2006)

P C
Cost = (Pbldg —Py)C, + (m)cm + K (Thbldg —Thpg (Pog » Tams ) EFF 56 )( EFFiomp )
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Dispatchable Renewable Power from Fuel Cells

Steady-State Success (only)

King County, WA

Pleasanton, CA
Waste-water plant

Waste-water

. - ’ /"T. ™
Sun City, CA — Waste-water treatment Santa Barbara, CA — Waste-water treatment g 3
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Enable Local Hydrogen Fuel Provision

Energy Station Concept — local (& dynamic?) H, production

Energy Station
 Electric Power Generation

* Thermal Power Generation

» Hydrogen Generation
“Renewable Energy Station”

+ Green Electricity
. en Thermal Pow NATURAL GAS |
R LAND-FILL GAS

* Renewable H;drogen

2010: World’s First Renewable High Temperature
Fuel Cell Hydrogen Tri-Generation Demonstration
Orange County Sanitation District, Fountain Valley, CA

rl

>
FuelCell Energy

UC Irvine H, Fueling Station .
350 bar; 700 bar; liquid (future) Mg«
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http://en.wikipedia.org/wiki/Image:US-DeptOfEnergy-Seal.svg

Energy Storage Technology Required

* Rating Comparison
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Hydrogen §
Storage
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Renewable Fuel Cell Systems Research

4.2 kW RFC Supply & Demand Power Flow:

’I PV Power 7.9 KW EZ Power (In) 4.2 kW FC Power (Out) B Grid Power
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Hydrogen Energy Storage

Solar Hydrogen Backup Power System .

Los Alamitos, CA

Outside
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PV: 10kW- 60 Sharp 175 W,
15,682 kWh Annual Basis

Proton Energy Hogen
S40RE electrolyzer

4 5kW GenCore Fuel Cells

2- APC Symmetra LX-8 -16
KVA batteries




Hydrogen Energy Storage

Pipeline transmission may be preferred to wires

Co-benefit of long-range zero emissions transportation fuel
UNITED STATES ANNUAL AVERAGE WINDsRS& e

© Advanced Power and Energy Program, 2012 33/33 \_»2,/

THANKS for Your Attention!

ADVANCED POWER
& ENERGY PROGRAM

UNIVERSITY of CALIFORNIA « IRVINE

),
© Advanced Power and Energy Program, 2012 34/33 \~-'§‘?/ '



